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possibilities have been considered:7 the twisting may be caused 
by the interaction between the micelles through dispersion forces 
or the primary effect of the chiral compound may be to distort 
the micelles so that they themselves assume a chiral structure. 
Theoretical considerations show that disk-shaped micelles are 
distorted in first order with the concentration of a chiral compound 
while cylindrical micelles do not have a first-order effect.13 The 

(13) Allender, D.; Saupe, A., to be published. 

Degenerate isomerizations can be defined as those chemical 
reactions which lead to products differing from the reactants only 
by permutation of identical atoms and possible mirror-image 
reflection.1 This definition encompasses cases in which both 
reactants and products include more than one molecule. While 
such reactions form a small subset of all possible reactions, they 
have been well studied in their own right.1 It is the intention of 
the present work to show that degenerate isomerizations of 
structures with TV atoms can be rigorously divided into two classes 
on the basis of an intrinsic symmetry property of the 3TV-di-
mensional coordinate space describing all possible arrangements 
of the TV atoms. The symmetry group of this coordinate space 
includes all the possible permutations of identical atoms in the 
set of TV atoms along with the operation of overall coordinate 
inversion. It is this subgroup of the overall symmetry group of 
the coordinate space (which also includes spatial rotations and 
translations) that will be explicitly considered here. Operations 
in this symmetry group will permute the possible products and 
reactants of degenerate isomerizations. 

The present work is divided into five principal sections. The 
first section describes the representations of symmetry operations 
and isomerizations necessary to visualize the later results. The 
second section presents the intrinsic symmetry property of the 
coordinate surface which allows the classification of degenerate 
isomerizations into two types and discusses the effect of the co­
ordinate surface symmetry operations on the possible paths con­
necting the reactants and products of degenerate isomerizations. 
The third section discusses properties of intermediates and tran­
sition states for the two possible types. Here the potential energy 
surface is considered in addition to the coordinate space. The 

(1) Leone, R. E.; Schleyer, P. v. R. Angew. Chem.. Int. Ed. Engl. 1970, 
9, 860. 
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observation that the twisting power of BS is indeed stronger in 
the NL phase is in agreement with this conclusion. We intend 
to verify the importance of the second mechanism by a more 
extensive study of the concentration dependence of the induced 
twist in the N c phase. 
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Table I. Correlation of Group-Theoretical Concepts and 
Their Chemical Representations 

group-theoretical concept chem representation 

cosets isomers based on atom numbering 
right multiplicatn based degenerate isomerizatns 

on ref numbering 
left multiplicatn based coordinate-space sym 

on atom nos. 

fourth section addresses the question of whether either type of 
degenerate isomerization is likely to be preferred (either statis­
tically or energetically). The final section discusses experimental 
differentiation of the two types, primarily by two-dimensional 
NMR. 

1. Representation 
It is necessary to choose a representation of the coordinate-space 

symmetry operations and isomerizations to work with and to aid 
visualization of the results of this work. Mclver and Stanton have 
noted a difficulty with this visualization of permutation operations 
in their work on the symmetry properties of transition states.2 It 
should be noted that other representations are possible but that 
the key result is intrinsic to the underlying group-theoretical 
structure and does not depend on the particular representation 
chosen. Three features of this representation must be described 
along with their correspondence to chemical concepts. These are 
summarized in Table I. 

In any given structure all the atoms are numbered to distinguish 
them. In addition, one of the possible isomers (based on the atom 
numbers) of the structure being considered is chosen as a reference 

(2) Stanton, R. E.; Mclver, J. W., Jr. /. Am. Chem. Soc. 1975, 97, 3632. 
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Figure 1. Degenerate isomerizations of the homoprismyl (top) and 2-
brexyl (bottom) cations illustrate the operation and multiplication of 
permutations. The reference numbered isomer is on the left in each case 
and has its symmetry group listed underneath it. Under the other isomers 
are lists of the cosets of permutations which convert the reference isomer 
to that isomer. 

structure (see Figure 1). For this structure only the atom numbers 
and reference numbers will coincide. For a given structure, which 
may undergo degenerate rearrangement, there are two permutation 
groups which are important. The first is the symmetry group, 
P, of the structure. This will generally be the point group for the 
structure but may be a nonrigid symmetry group as defined by 
Longuet-Higgins.3 The notation of Longuet-Higgins is adopted 
here, and reflective operations are represented as permutation 
inversions which are atom permutations coupled with overall 
coordinate inversion (represented by an asterisk). This inversion 
operation acts on the spatial coordinates of the atoms in all 
structures including the reference structure. The second per­
mutation group, G, is a symmetry group of the SA'-dimensional 
coordinate space. This^roup includes all the possible permutations 
of equivalent atoms and the overall coordinate inversion operation. 
All the possible isomers (based on the different atom numbers) 
of the structure correspond to the cosets of P in G (see Appendix 
A2). 

Consider the structures shown in Figure 1. The reference-
numbered structure is shown on the left in each case. Under each 
reference structure is the list of the permutations in its symmetry 
group, G. Under the other structures are the cosets of the sym­
metry group which include all the permutations that convert the 
reference structure to that structure. Isomerizations are expressed 
as permutations of atoms on the basis of the reference numbering 
and are independent of the atom numbering, and this must be 
taken into account when analyzing multistep isomerizations. 
Consider the isomerizations of the homoprismyl cation shown in 
Figure 1 (only the carbons are explicitly considered here). The 
second (hypothetical) isomerization, designated (26)R, refers to 
the reference numbering (the leftmost structure) and not to the 
atom numbers. The first isomerization, designated (1432)(576)R, 
acts on the reference structure so that the atom numbers and 
reference numbers coincide. Thus the problem of double labeling 
of atoms and reference structures can be largely avoided by an­
alyzing one-step isomerizations with just the reference structure. 
This practice will be followed throughout the remainder of this 
work. The operation of permutations as isomerizations is referred 
to as the right action of the permutation, and the subscript R is 
used. The symmetry operations in the group P (usually the point 
group of the structure) are of this type also. 

The desired visualization of the coordinate-space symmetry 
operations is achieved by another operation of the permutations. 
These permutations act on the atom numbers, are designated by 
the subscript L, and are referred to as the left action of the 
permutation. The effect of these permutations on structures is 
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Figure 2. Two examples of self-inverse (SI) degenerate isomerizations. 
The reference numbered isomers are on the left and have their symmetry 
groups listed under them. The first example (top) is a methyl migration 
of a heptamethylcvclohexadienyl cation. The isomerization shown is 
effected by the permutation (276543). The other permutations in the 
list (coset) under the product (on right) would accomplish the same 
overall change. The second example (bottom) is a Berry pseudorotation 
of a trigonal-bipyramidal structure with a chiral ligand. The isomeri­
zation shown is effected by the permutation (1342). 

easily followed, and an example is shown in Figure 1. These 
permutations act by left multiplication on the cosets and in this 
way permute the possible isomeric structures (see Appendix A4 
for details). On the coordinate space these permutations permute 
the three coordinate axes for each atom with the three axes for 
another atom. 

Degenerate isomerizations of chiral structures are easily ac­
commodated as shown by the example in Figure 1. Note that 
structures which have an enantiomeric skeleton (apart from atom 
numbers) to the reference structure will always be represented 
by a coset in which all permutations have a coordinate inversion 
(an asterisk) attached. Part of the reason for the choice of the 
permutation-inversion representation of Longuet-Higgins is the 
ease in dealing with chiral structures.4 

2. Principal Symmetry Property 
The principal symmetry property is the following. All possible 

degenerate isomerizations fall into two classes: (1) self-inverse 
(SI) degenerate isomerizations in which the reactant and product 
are exchanged by some symmetry operation of the coordinate 
space; (2) non-self-inverse (NSI) degenerate isomerizations in 
which the reactant and product are not exchanged by any sym­
metry operation of the coordinate space. There will be a symmetry 
operation of the coordinate space which takes reactant to product 
and another (its inverse) which takes product to reactant for a 
NSI isomerization but there will be none which actually exchanges 
the two. This seemingly trivial distinction is nevertheless the basis 
for the twofold classification and a number of interesting different 
properties of the two types of isomerizations. It should be em­
phasized that this is an intrinsic property of the structures of the 
two symmetry groups involved. Thus once the groups P and G 
are chosen, the self-inverse and non-self-inverse property is es­
tablished and does not depend on further properties of the rep­
resentation used or even the chemical system being studied. 

Each possible pair of isomers is a self-inverse pair if a coor­
dinate-space symmetry operation exchanges the members of the 
pair and a non-self-inverse pair if there is no such symmetry 
operation. The simplest method of determining whether a pair 
of isomers is a self-inverse pair is to use the coset representation 
developed above. If one of the pair is designated the reference 
isomer, the other is represented by a coset of the symmetry group 
of the reference isomer. If this coset contains a permutation of 
order 2 or a permutation of higher (only even) order and its inverse, 

(3) Longuet-Higgins, H. C. MoI. Phys. 1963, 6, 445. 
(4) Nourse, J. G. In "The Permutation Group in Physics and Chemistry"; 

Springer-Verlag: New York, 1979; p 28. 



Self-Inverse and Non-Self-Inverse Isomerizations J. Am. Chem. Soc, Vol. 102. No. 15. 1980 4885 

C 

E (132) 

4 —> 3-

A, l 4 P 3 

B f Q - ^ f A Al8 
C 2 3 B ^ p _ z 

E (1423)' 
Figure 3. Two examples of a non-self-inverse (NSI) degenerate isom­
erization. The first example (top) is the internal methyl rotation of a 
chiral ethane derivative. The second example is the racemization of a 
meso-substituted biphenyl derivative by rotation of the front chiral ligand 
by 180°. The starting structure is shown in both an end-view and a 
side-view. The final structure is shown in two end-views. The enan­
tiomeric relationship is emphasized by comparison of the end-view of the 
starting structure and the lower end-view of the final structure. 

then the two isomers are a self-inverse pair and a degenerate 
isomerization taking one to the other is a self-inverse degenerate 
isomerization. The coordinate-space symmetry operation is 
represented by the left multiplication of the permutation of order 
2 (or one of the inverse pair) on the cosets and will exchange them. 
Examples of SI isomerizations are shown in Figure 2. The 
heptamethylcyclohexadienyl cation migration shown is a SI process 
since the coset for the product has a permutation of order 2. The 
Berry pseudorotation of" the chiral-substituted trigonal-bipyramidal 
structure is SI because the coset contains a permutation and its 
inverse. It is assumed that there is free rotation about the bond 
to the chiral ligand. A simple example of a NSI process is the 
rotation of a methyl group bonded to a carbon with three different 
substituents (Figure 3). A structure and its enantiomer (obtained 
by overall coordinate inversion) will always be a SI pair since the 
inversion operation is of order 2. However it does not follow that 
a structure and any enantiomeric structure will be a SI pair. An 
example of a NSI enantiomeric pair is shown in Figure 3 (last 
example) and is based on the classic meso-biphenyl compound 
discovered by Mislow.5a 

A simple consequence of this coordinate-space symmetry 
condition is that there are forward and reverse reactions between 
SI pairs which "look alike" since paths between members of SI 
pairs are also exchanged by the coordinate-space symmetry op­
eration. Thus for any path from A to B where A and B are a 
SI pair of isomers, there is a symmetrically equivalent reverse path 
from B to A. The forward and reverse paths may be the same 
path (i.e., the path is symmetric; see next section), but this need 
not be the case. The forward and reverse "look-alike" paths may 
also be enantiomeric as would be the case for a 1,2-methyl shift 
path for the hexamethylcyclohexadienyl cation migration shown 
in Figure 2. NSI pairs do not have this symmetry property so 
that there is not necessarily a reverse path symmetrically equivalent 
to a forward path connecting two members of a NSI pair and in 
general the reverse reaction will "look different" from the forward 
path. The difference may be subtle as in the case of the methyl 
group rotation in Figure 3. Clockwise rotation puts the hydrogen 
between atoms A and B closer to atom B. The reverse coun-

(5) (a) Mislow, K.; Bolstad, R. J. Am. Chem. Soc. 1955, 77, 6712. (b) 
Burwell, R. L., Jr.; Pearson, R. G. J. Phys. Chem. 1966, 70, 300. (c) Wolfe, 
S.; Schlegel, H. B.; Csizmadia, I. G.; Bernardi, F. J. Am. Chem. Soc. 1975, 
97, 2020. (d) Salem, L. Ace. Chem. Res. 1971, 4, 322. 

terclockwise rotation puts it closer to atom A. Because atoms A 
and B are different, these slightly rotated structures are different 
and the forward and reverse reactions do not "look alike". If atoms 
A and B were identical, the forward and reverse rotations would 
be enantiomeric and the rotation would be self-inverse (SI). The 
difference is fairly obvious in the case of the NSI substitution 
reaction (eq 1) involving six equivalent ligands, which involves 

U - L T 
. -L2 

L, 

*u (1) 

equatorial replacement in the forward direction and axial re­
placement in the reverse direction.6 There will often be forward 
and reverse paths between members of NSI pairs which "look 
alike" and go through other symmetrical intermediates (i.e., those 
with symmetry elements not present in either member of the NSI 
pair). These intermediates may be isomeric with the reactant and 
product. (See example in ref 6a, p 4573.) In such cases, each 
step of the multistep path will look like one reverse step but there 
will be no overall coordinate-space symmetry operation which 
exchanges the two ends of the path. (See example in section 4.) 

The principal point here is that SI pairs of isomers will always 
have symmetrically related forward and reverse paths connecting 
them. This property has been made use of in some detailed studies 
of examples of SI degenerate isomerizations.5b_d NSI pairs of 
isomers will not in general have symmetrically related forward 
and reverse paths connecting them. Any forward path connecting 
a NSI pair will in general "look different" from any reverse path 
although the difference may be subtle. 

3. Properties of Intermediates and Transition States 
The available transition states for SI and NSI degenerate 

isomerizations differ in their symmetry properties on the basis 
of the rules of Stanton and Mclver2 and Pechukas.7 These authors 
have established that only degenerate isomerizations can ever 
proceed through transition states with more symmetry than that 
common to reactants and products. Furthermore, the additional 
symmetry must exchange reactants and products. The assump­
tions of Pechukas7 concerning saddle point transition states directly 
connected to reactant and product by paths of steepest descent 
will be adopted here. The term "transition state" will be used 
in this sense throughout this work. The possible symmetries of 
transition states are easily computed by using the present rep­
resentation. 

The existence of a coordinate-space symmetry operation which 
exchanges the members of a SI pair of isomers assures the ex­
istence of structures in the space which are fixed by this symmetry 
operation. These structures are available as transition states or 
intermediates for SI degenerate isomerizations. This is merely 
a statement of existence, and there is no assurance that these 
structures are energetically feasible or even chemically reasonable. 
By contrast, NSI degenerate isomerizations have no such sym­
metrical structures available. Thus only SI processes can in 
principle proceed through transition states which have symmetries 
that exchange reactants and products. The additional symmetry 
operations need not be of order 2 but must be of even order. In 
cases in which the transition state has this additional symmetry, 

(6) (a) Nourse, J. G.; Mislow, K. J. Am. Chem. Soc. 1975, 97, 4571. (b) 
A recently published example by Barltrop et al.fc may help the visualization 
of this distinction between SI and NSI isomerizations. They have given the 
12 symmetry distinct permutation processes for a six-membered ring. With 
use of their nomenclature in their Figure 1, patterns P5 and P7 are NSI and 
the reverse of each other. In this case the forward and reverse reactions "look 
different" (i.e., if the forward reaction looks like P5, the reverse looks like P7). 
Similarly, P6 and P,0 are NSI and the reverse of each other. The remaining 
eight patterns are SI and for these forward and reverse "look alike". This 
result can be verified by noting that the twelve patterns correspond to the 
double cosets D6/S6\D6 and that eight of these are self-inverse and four are 
non-self-inverse (See Appendix A3, A5.) (c) Barltrop, J. A.; Barrett, J. C; 
Carder, R. W.; Day, A. C; Harding, J. R.; Long, W. E.; Samuel, C. J. J. Am. 
Chem. Soc. 1979, 101, 7510. 

(7) Pechukas, P. J. Chem. Phys. 1976, 64, 1516. 
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Table H. Percentage of Possible Degenerate Isomerizations Which 
are Self-Inverse (SI) for TV Atoms and Particular Symmetries 

syma 

e 
2(«/2) 
2(«/2-l) 
3("/3) 

2 

100 
100 

3 

60 
100 
100 
100 

4 

39 
64 
64 
100 

N 

5 

21 
45 
41 
67 

6 

10 
20 
22 
32 

7 

4.6 
9.1 
9.4 
14 

8 

1.9 
3.8 
3.8 
5.6 

" Symmetry is expressed as a permutation cycle. For N= 5, 
2(5/2) m e a n s a gngie twofold symmetry operation of cycle type 
(12)(34); 2 ( 5 / 2 - 1 ) = 2 ( 3 / 2 ) means a single twofold operation of 
cycle type (12). 

the potential surface will be symmetric with respect to these 
symmetry operations since the two sides of the barrier are also 
exchanged by the coordinate-space symmetry operation. The SI 
processes pictured in Figures 1 and 2 all have available inter­
mediates or transition states which have symmetry that exchange 
reactants and products. This additional symmetry is easily com­
puted by examination of the cosets representing the isomers of 
the SI pair (as long as one is the reference isomer). If the top 
permutation in the coset is of order 2 or is one of the permutations 
whose inverse is also in the coset (note that any permutation can 
be used to generate the coset and therefore be the top permutation; 
see Appendix A2), then the largest symmetry group available for 
the transition state is the set of order 2 elements and inverse pairs 
in the coset plus the permutations of the reference structure 
symmetry group which are next to them. (See Appendix A7 for 
an explanation of why this procedure works.) This procedure 
indicates that the carbonium ion isomerizations in Figures 1 and 
2 can go through transition states with reflective symmetry (since 
the permutations which are recovered this way have an asterisk) 
and the Berry pseudorotation in Figure 2 has an available tran­
sition state with fourfold symmetry. By contrast the intramolecular 
SI isomerization (eq 2) does not have an easily accessible transition 

RW-
.-L, 

RW-
--L1 

(2) 

L, 

(14)(23) 
(12) (34) 
(13) (24) 

state with D1 symmetry, the largest symmetry group available for 
a transition state and computed by the above method. (The bond 
to the chiral ligand R(+) would have to be broken and reformed.) 
NSI degenerate isomerizations cannot proceed through a transition 
state with any symmetry beyond that common to both the reactant 
and product since there are no available structures with symmetry 
which exchange reactant and product. Thus, NSI degenerate 
isomerizations have no more symmetry available to their potential 
transition states than do nondegenerate isomerizations. 

4. Is Either Type Preferred? 
Since degenerate isomerizations can be separated rigorously 

into two classes, it is interesting to investigate if one class either 
is preferred either statistically or energetically or is preferred for 
some other reason. While this particular symmetry property (of 
the coordinate space) does not lead to rigorous selection rules, 
some definite trends are apparent. 

The question of statistical preference is easily answered. Table 
II gives the percentage of possible degenerate isomerizations which 
are SI for different numbers of atoms and some common skeletal 
symmetries. The combinatorial methods used are described in 
Appendix A5. It is apparent that NSI isomerizations predominate 
even for small structures (up to 8 atoms of the same type and hence 
available to be exchanged). This trend continues as the number 
of atoms increases. The percentage of possible SI isomerizations 
increases with increasing structural symmetry, and for smaller 
structures with a lot of symmetry, SI processes are statistically 
dominant. In spite of the overall dominance of NSI possibilities, 

SI examples seem to be disproportionately represented among 
known degenerate isomerizations.8 Explanations for this trend 
are offered for both highly symmetric structures and structures 
with little or no symmetry. 

Two reasons can be offered for the dominance of SI processes 
for highly symmetric structures. The first is the already noted 
trend toward statistical dominance of SI processes for symmetric 
structures (Table II). The second reason is that NSI processes 
are unlikely to be the lowest energy pathways which go through 
symmetrical stable intermediates (those with more symmetry than 
reactants or products) as there will often be a SI process which 
goes through the same intermediate. Such symmetrical structures 
have already been ruled out as transition states for NSI processes. 
Consider the hypothetical NSI substitution reaction (1-3). This 

Lr-K'1*+U - > 
.-L5 
S L s 

1 \ / 
(3) 

L, 

reaction might go through the octahedral intermediate, 4. This 
octahedral structure could then expel any of the six equivalent 
ligands to reform the trigonal-bipyramidal structure. Expulsion 
of ligand L4 would yield an overall SI process of equal energy to 
the NSI process (expulsion of ligand L1). This situation (existence 
of an available SI process) will occur whenever the intermediate 
has an additional symmetry element of order 2 that is not present 
in both the reactant and product. It is relatively rare (although 
possible) for the symmetry of a structure to increase by adding 
only symmetry operations of order larger than 2.' 

The overall NSI sequence in this example (expulsion of ligand 
L1 of the octahedral intermediate 4) provides an example in which 
forward and reverse paths connecting a NSI pair of isomers "look 
alike". This occurs because of the greater symmetry of the oc­
tahedral intermediate, 4, in which all the ligands are equivalent. 
On the 3iV-dimensional coordinate surface there is a symmetry 
operation which fixes structure 4 and takes 1-3 and another 
symmetry operation (its inverse) which takes 3-1. Since the paths 
go through this intermediate 4, they are also permuted in the same 
manner. 

Another reason for the apparent dominance of SI processes is 
based on the idea of least motion and the restriction on the possible 
geometric orientations of symmetry operations in three-dimensional 
space. The change that occurs during a degenerate isomerization 
is described by a permutation of atoms (the right action of the 
permutation described above). If this permutation is of order 
larger than 2 and the structure has no symmetry, then the isom­
erization will be NSI. A common situation, however, for de­
generate isomerizations is for the structure to have one twofold 
element of symmetry (usually an axis or plane), and this case will 
be analyzed in more detail to illustrate factors which favor SI 
processes. 

(8) (a) Scott, L. T.; Jones, M., Jr. Chem. Rev. 1972, 72, 181. (b) 
Woodward, R. B.; Hoffmann, R. "The Conservation of Orbital Symmetry"; 
Academic Press: New York, 1970. (c) Reference 1. (d) Mislow, K. Ace. 
Chem. Res. 1976, 9, 26. AU the examples of degenerate isomerizations 
discussed in these reviews are self-inverse (SI). While this was not an ex­
haustive search, the results are puzzling enough in comparison to the statistical 
dominance of NSI processes shown in Table II to warrant further investigation 
of the relative likelihood of the two types. 

(9) In addition, any even order symmetry elements of order n which are 
added must when multiplied by themselves n/2 times give a symmetry element 
of order 2 which is common to the symmetry groups of both the reactant and 
product. An example which satisfies these conditions is the increase of sym­
metry from Ci to C6. 
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Table III. Self-Inverse (SI) and Non-Self-Inverse (NSI) Possibilities 
for a Degenerate Isomerization Expressed as a Sixfold Cyclic 
Permutation with Twofold Symmetry 

sym 
operations cycle type0 

no. 
possible 

SI or 
NSI 

Oy", C j " 
(1)(26)(35)(4) 
(12)(34)(56) 
(14)(25)(36) 
(1)(2)(3)(4)(5)(6) 

SI 
SI 
NSI 
NSI 

° Atoms are numbered consecutively around the hexagon. 

Consider a potential NSI process where the permutation de­
scribing the isomerization will include one or more cycles of length 
greater than 2. Consider one of these cycles of length N which 
can be expressed as (12...N). The overall change of the isom­
erization is that the new environment of atom 1 is equivalent to 
the old environment of atom 2, etc. More importantly, the distance 
from 1 to 2 (as well as the type of bond if any) must become equal 
to the distance from 2 to 3, etc., the angle 1—2—3 must become 
equal to the old angle 2-3-4, etc. In principle these changes of 
structural parameters could occur for any initial orientation of 
the N atoms; however, in practice, this change will be more likely 
if the structural parameters which must become equivalent in the 
product are nearly equivalent in the reactant. This is a simple 
argument for least motion in the overall process; however, in the 
present context this restriction leads to interesting results. For 
a permutation cycle of length N, there are a limited number of 
orientations of the atoms which have the various structural pa­
rameters nearly equivalent. These correspond to perturbations 
of the possible orientations in which the structural parameters are 
exactly equivalent (i.e., symmetrical). For example, consider a 
cycle of length 6. There are three possible symmetric orientations 
which correspond to the C6 rotation axis (e.g., benzene), the S6 
alternating axis (e.g., chair cyclohexane), and the S3 alternating 
axis (e.g., prismane). Thus a structure undergoing a degenerate 
isomerization with a permutation cycle of length 6 and with 
minimal internal motion would have the 6 atoms in an orientation 
close to one of the three cases. Consider the case of the C6 rotation. 
In the structure undergoing degenerate isomerization the 6 atoms 
would be nearly in a hexagonal orientation. Now the twofold 
symmetry operation must also have some effect on these 6 atoms. 
There are only four possibilities which only permute the 6 atoms 
among themselves, and they can be classified by their permutations 
of these 6 atoms (Table HI). Having established the permutation 
cycle for the isomerizations and the skeletal symmetry, we de­
termined the type of the degenerate isomerization (SI or NSI), 
and these are given in Table III also. These are the only possi­
bilities, 75% give SI processes (based on the number possible given 
in Table III), and 25% give NSI processes. These percentages 
can be compared with those given in Table II for all possibilities 
in which NSI processes are more abundant. An example of the 
SI process with a plane of symmetry is the heptamethylcyclo-
hexadienyl cation migration in Figure 2. An example of a NSI 
process with a C12 axis would be the pseudorotation of all cis 
hexamethylcyclohexane in the twist conformation. For cycles with 
an odd number of atoms, all the possible orientations of twofold 
symmetry operations with respect to the ring of atoms give SI 
processes except when the entire ring is in a plane of symmetry. 
The principal point here is that the choice of permutations for 
the (minimal motion) degenerate isomerization and the symmetry 
operations of the structure are not independent on the basis of 
the limited number of relative orientations of the symmetry op­
erations in three-dimensional space. In the case of cyclic orien­
tations of several atoms with a twofold symmetry element (cases 
common among known degenerate isomerizations) SI possibilities 
are more numerous than NSl possibilities. 

It is perhaps not surprising that many of the known structures 
which undergo degenerate isomerizations have some skeletal 
symmetry. This skeletal symmetry forces some of the structural 
parameters to be identical in both reactant and product, thus 
reducing the motion necessary to accomplish this during a de­

generate isomerization. Degenerate isomerizations, which are 
expressed as permutations of order greater than 2 and which 
involve structures with no symmetry, will be NSI. A common 
example is the methyl group rotation in Figure 3. Many SI 
processes will become NSI by adding chiral ligands or some chiral 
environment to destroy any planes of symmetry. Thus there is 
no intrinsic difficulty with NSI processes for structures with no 
skeletal symmetry. The overwhelming statistical dominance of 
NSI processes in these cases (Table II) may still be misleading 
because the amount of motion necessary to exchange two atoms 
or atoms in pairs (a SI process) may often be less than that 
necessary to exchange larger sets (a NSI process), thus favoring 
SI processes. 

5. Possible Experimental Observation 
There is a particularly straightforward way of experimentally 

distinguishing between SI and NSI degenerate isomerizations in 
certain favorable cases using a two-dimensional NMR experiment 
recently described by Meier and Ernst.10 The resulting spectrum 
in this type of experiment is a site-exchange matrix for the 
structure undergoing degenerate isomerization (in their example). 

The predicted site-exchange matrix for a degenerate isomeri­
zation is easily computed by using any permutation which ex­
presses the overall change of the isomerization.11 The rows and 
columns of the matrix are the sets of symmetrically equivalent 
atoms. The entries are the number of atoms which go from one 
set of equivalent atoms to another in the isomerization. The sum 
of the entries is equal to the number of atoms involved. Thus 
matrix (I) is the site-exchange matrix for the heptamethyl-
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cyclohexadienyl cation migration in Figure 2 (also the example 
used by Meier and Ernst10). 

Matrix II is for the homoprismyl rearrangement in Figure 1. 
These matrices will always be symmetric across the principle 
diagonal for SI processes. If one further condition is satisfied, 
these matrices will not be symmetric across the principal diagonal 
for NSI processes. This further condition is that the property of 
being SI or NSI (for this purpose) is derived by using the sym­
metry group of the structure which includes all permutations of 
identical atoms not just those permutations which correspond to 
the usual point-group symmetry operations. This group will 
generally be larger than the point group.14 If the coset of this 
group corresponding to another isomer contains no permutation 
of order 2 or any inverse pairs, then the pair of isomers will be 
NSI based on this additional criterion and the site-exchange matrix 
for the degenerate isomerization will not be symmetric across the 
principal diagonal. Matrix (III) is the site-exchange matrix for 
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III IV 
the methyl rotation in Figure 2, and matrix (IV) is for the hy­
pothetical trigonal-bipyramid substitution reaction (1-2) shown 
above. The reverse reactions have site-exchange matrices which 
are the transposes of these. 

If this additional condition is satisfied then potential SI and 
NSI degenerate isomerizations can be distinguished by the 2D 

(10) (a) Meier, B. H.; Ernst, R. R. J. Am. Chem. Soc. 1979,101, 6442. 
(b) Jeener, J.; Meier, B. H.; Bachmann, P.; Ernst, R. R. /. Chem. Phys. 1979, 
71, 4546. 

(11) These matrices were first described by Frame.12 They have been 
called double-coset symbols13 and were used in the present context as site-
exchange matrices by Klein and Cowley.14 

(12) Frame, J. S. Proc. Natl. Acad. Sci. U.S.A. 1940, 26, 132. 
(13) Kramer, P.; Seligman, T. H. Nucl. Phys. A 1969, 136, 545. 
(14) Klein, D. J.; Cowley, A. H. J. Am. Chem. Soc. 1975, 97, 1633. 
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NMR method of Meier and Ernst.10 If a NSI degenerate isom-
erization is being observed, then with the assumption that both 
the forward and reverse reactions occur, the observed spectrum 
will be the sum of the site-exchange matrices for the forward and 
reverse reactions. This will give a spectrum with twice as many 
peaks (doubly intense count twice) as the number of atoms in­
volved. A SI degenerate isomerization will give a spectrum with 
as many peaks as atoms involved. This assumes that only one 
process is responsible for the exchange. Multiply occurring 
processes would give weighted sums of the site-exchange matrices 
for each process involved. These observed site-exchange matrices 
should be symmetric across the principal diagonal since forward 
and reverse reactions are expected to occur with equal probability. 
It would be very interesting if by choice of molecular system (e.g., 
with very unsymmetrical potential barriers) or experimental 
conditions15 a nonsymmetric (across the principle diagonal) 
spectrum was observed. If a degenerate isomerization was used 
in such a study, only a NSI process could ever give a nonsymmetric 
spectrum. 

It is also possible to make predictions about the site-exchange 
matrix spectra for nondegenerate isomerizations. Nothing has 
been said so far about nondegenerate isomerizations, and most 
of the considerations developed so far do not apply to these re­
actions. However, nondegenerate isomerizations can be formally 
considered as degenerate isomerizations of two molecules. The 
"isomerization" permutes atoms between the sites on the two 
molecules, and these can be classified as SI or NSI by using the 
product of the symmetry groups of both molecules. The same 
considerations about the number of peaks in the 2D NMR ex­
periment apply to these cases also.16 

6. Overview 
To achieve an overview of the present work, consider the fol­

lowing situation: Given a degenerate isomerization of some 
structure, the questions may be asked whether there is a reverse 
isomerization which "looks like" the forward reaction and whether 
the isomerization could go through a symmetric transition state. 
There will always be a reverse path which looks like the forward 
path if the isomerization is self-inverse (SI), that is, there is a 
symmetry operation of the 3/V-dimensional coordinate space which 
exchanges the reactant and product. For these SI degenerate 
isomerizations there will also always be potential structures which 
are symmetric with respect to product and reactant (they have 
symmetry operations which exchange reactant and product), but 
there is no guarantee they will be energetically favorable as 
transition states or even chemically reasonable. There is another 
class of degenerate isomerizations called non-self-inverse (NSI) 
degenerate isomerizations for which there is no coordinate-space 
symmetry operation which exchanges reactant and product, and 
for these there is never a symmetric transition state (i.e., a saddle 
point directly connected to reactant and product by paths of 

(15) (a) Krupka, R. M.; Kaplan, H.; Laidler, K. J. Trans. Faraday Soc. 
1966, 62, 2754. (b) Boyd, R. K. Chem. Rev. 1977, 77, 93. 

(16) An alternative method for nondegenerate isomerizations is the fol­
lowing: Determine the overall degenerate isomerizations for one of the 
structures involved. This will be expressed as some permutation of the TV 
atoms. If this permutation is in the same double-coset Pr/S„\Pp as the identity 
where Pr is the symmetry group of the reactant and Pp is the symmetry group 
of the product, then there will be IN entries in the site-exchange matrix. If 
not, there will be 47V entries. 

(17) Hall, M., Jr. "The Theory of Groups"; MacMillan: New York, 1959. 
(18) Frame, J. S. Bull. Am. Math. Soc. 1941, 47, 458. 
(19) (a) Gielen, M.; Vanlautem, N. Bull. Soc. Chim. BeIg. 1970, 79, 679. 

(b) Meakin, P.; Muetterties, E. L.; Tebbe, F. N.; Jesson, J. P. J. Am. Chem. 
Soc. 1971, 93, 4701. (c) Klemperer, W. G. J. Chem. Phys. 1972, 56, 5478. 
(d) Hasselbarth, W.; Ruch, E. Theor. Chim. Acta, 1973, 29, 259. (e) Brocas, 
J.; Willem, R.; Fastenkal, D.; Buschen, J. Bull. Soc. Chim. BeIg. 1975, 84, 
483. (!) Nourse, J. G. J. Am. Chem. Soc. 1977, 99, 2063. See also ref 4, 
6a, 14, and 19e for discussions about the possibilities of non-self-inverse double 
cosets. 

(20) Burnside, W. "The Theory of Groups of Finite Order"; Dover: To­
ronto, 1955; pp 22-24. 

(21) Frame, J. S. Bull. Am. Math. Soc. 1943, 49, 81. Also ref 18. 
(22) (a) Muetterties, E. L. J. Am. Chem. Soc. 1969, 91, 1636. (b) 

Klemperer, W. G. Ibid. 1972, 94, 6940. 
(23) Ruch, E.; Hasselbarth, W.; Richter, B. Theor. Chim. Acta 1970,19, 

288. 

steepest descent) and no guarantee of "look-alike" reverse paths. 
Examples of these two types are given in Figures 2 and 3. The 
rigorous separation of all possible degenerate isomerizations into 
two types (SI and NSI) is based on an intrinsic group-theoretical 
property of the symmetry groups of the chemical structure and 
of the coordinate space and is independent of the representation 
chosen and even the chemical details.24 Having achieved this 
rigorous classification, we may ask two further questions: Is either 
type favored and how can they be experimentally distinguished? 
Even though NSI possibilities are statistically dominant, it is shown 
that for structures with any symmetry SI processes tend to be 
favored. The two types could be easily distinguished in favorable 
cases by the recently described two-dimensional NMR experiment 
of Meier and Ernst.10 
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Appendix 
This appendix summarizes some of the relevant group-theo­

retical properties used and gives proofs and clarifications of some 
of the assertions made in this paper. 

Al. Permutations. Permutations written as (123)R or (123)L 
are read as follows: Those with subscript R act on the atom 
positions defined by a reference structure and are read as the atom 
which starts in reference position 1 goes to reference position 2, 
the atom in position 2 goes to position 3, the atom in position 3 
goes to position 1. Those with subscript L act on the atom numbers 
in any structure and are read as atom number 1 goes to where 
atom number 2 starts, atom number 2 goes to where atom number 
3 starts, etc. The order of a permutation is the number of times 
a permutation must be multiplied times itself to give the identity 
permutation (all atoms fixed). A cycle of a permutation is the 
set of numbers enclosed between a set of parentheses. The length 
of a cycle is the number of atoms in the cycle. The identity of 
a group (the permutation which leaves all atoms fixed) is expressed 
by the letter e. 

Al. Cosets. Consider two groups, G and a subgroup P. G can 
be broken up into a union of cosets of P (eq 4) by taking elements 

G = P U aP U bP U ... (4) 

a, b,... not in P and multiplying by all the elements of P. This 
procedure gives a set of elements of G, called a coset of P, equal 
in size to the size of P. Any element of the coset can be used to 
generate the coset. Basic properties of cosets are summarized by 
Hall.17 

A3. Double Cosets. G can also be broken up into a union of 
double cosets (eq 5) by multiplication of an element a, b,... not 

G = P U PaP U PbP U ... (5) 

in P on both sides by all the elements of P. Each double coset 
is a collection of intact cosets. For the present purposes, there 
are two kinds of double cosets, those which contain all the inverses 
of each element in the double coset called a self-inverse double 
coset and those which contain no inverses called a non-self-inverse 
double coset. The cosets in a self-inverse double coset will contain 
at least one element of order two or a pair of inverse elements 
while a coset in a non-self-inverse double coset will contain no 
such elements. It is this simple property which has been chosen 
in the present work to distinguish these cases. These properties 
were first discovered by Frame,18 and the choice of the terms 
self-inverse (SI) and non-self-inverse (NSI) for degenerate isom­
erizations was made to conform to Frame's original terminology. 
Double cosets have been the method of choice for defining sym­
metry distinct isomerization modes.19 

A4. Right and Left Representation, Alternate Proof of Coor­
dinate-Space Symmetry. Any element, p, of a group acts on the 
entire group by left multiplication, px = x', and right multipli­
cation, xp = x". Each group element can be represented by a 
permutation matrix for the left multiplication and a (usually) 

(24) Nourse, J. G. Proc. Natl. Acad. ScL U.S.A. 1975, 72, 2385. 
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different matrix for the right multiplication. The interesting 
property here is that all the left multiplication matrices commute 
with all the right multiplication matrices.20 Now consider the 
action of the group elements on the cosets. The left multiplication 
permutes the cosets (see eq 6), but the right multiplication 

gxH = x'H (6) 

(usually) breaks up the cosets (see eq 7). The left multiplication 
xHg = parts of several cosets (7) 

on cosets can be represented by permutation matrices. The effect 
of the right multiplication on cosets is also represented by matrices 
called double-coset matrices. The left multiplication matrices 
commute with the double-coset matrices.21 The double-coset 
matrices are the incidence matrices of "topological representations" 
which pictorially display isomer (coset) interconversion.22 For 
the purposes here these topological representations can be con­
sidered as "nets" in the coordinate space in which the points are 
isomers and the edges symbolize paths between them. The key 
result is that the left multiplication matrices (permutation of 
identical atoms) commute with the topological representations 
and are therefore symmetries of the coordinate space. These 
double-coset matrices are symmetric across the principle diagonal 
if the double coset is self-inverse.21 

A5. Combinatorics. Table II was constructed by using two 
previously published combinatorial formulas. Ruch23 has given 
a formula for the total number of double cosets of a subgroup P 
in G. Frame18 has given a formula for the number of self-inverse 
double cosets. The percentages in Table II for n larger than 5 
were obtained by dividing the two numbers. This is only a good 
approximation for the number of possible SI and NSI processes 
since the sizes of double cosets vary. A formula which gives sizes 

Introduction 
We recently reported the results of preliminary experiments 

with solid-state high-resolution NMR spectroscopy of some rep­
resentative groups of organic and inorganic compounds.2 In this 
paper, we describe the results of further studies of solid silicates, 
which show that the very considerable possibilities of high-reso­
lution NMR are not confined to liquids, solutions, and solid 
samples of predominantly organic compounds, but these techniques 
are perfectly well applicable to the study and analysis of solid, 

(1) (a) Institute of Cybernetics; (b) Institute of Physical Chemistry; (c) 
Institute of Inorganic Chemistry. 

(2) E. T. Lippmaa, M. A. Alia, T. J. Pehk, and G. Engelhardt, J. Am. 
Chem. Soc, 100, 1929 (1978). 

0002-7863/80/1502-4889S01.00/0 

of double cosets and does not need double-coset representatives 
is lacking. For n less than 5 the percentages are exact and were 
enumerated by generation of the various possibilities. 

A6. Conjugation Invariance, Invariance to Choice of Reference 
Isomer and Atom Numbering. Changing the reference isomer or 
renumbering the atoms in a given problem has the effect of 
conjugation by the permutation, r, which expresses the change 
of numbering in eq 8. The operation of conjugation preserves 

r~lxr = x' (8) 

all the group-theoretical properties being used in the present work. 
These are the self-inverse property of cosets and double cosets, 
the size of double cosets, the cycle structure and order of a per­
mutation, and the combinatorial results. 

A7. Method for Computing the Largest Transition-State 
Symmetry Group. Consider a reference structure and another 
isomer. The symmetries common to both are the elements of the 
group intersection (eq 9) where P is the symmetry group of the 

P A X-1Px (9) 

reference isomer, x is in the coset representing the other isomer, 
and x']Px is the symmetry group of the other isomer. If x is an 
element of order 2 or a member of an inverse pair in the coset 
representing the nonreference isomer (and therefore exchanges 
the two isomers by left multiplication), then multiplication by any 
element, y, in the intersection group (which therefore fixes both 
isomers by left multiplication) will give another element which 
exchanges the two isomers. Repetition of this procedure for all 
members of the intersection group will give a group of size twice 
that of the intersection group and will include all the permutations 
which fix both isomers and all those which exchange them (there 
will be an equal number of each). 

insoluble inorganic silicates and aluminosilicates. 
High-resolution 29Si NMR has proved to be an efficient method 

for structure elucidation of silicic acids and silicate anions in 
solution. Numerous studies of alkali-3,4 and tetraalkylammonium 
silicates5 as well as solutions of silicic acids6'7 have established 

(3) G. Engelhardt, D. Zeigan, H. Jancke, D. Hoebbel, and W. Wieker, Z. 
Anorg. AlIg. Chem., 418, 17 (1975). 

(4) R. K. Harris and R. H. Newman, J. Chem. Soc, Faraday Trans. 2, 
73, 1204 (1977). 

(5) D. D. Hoebbel, G. Garzo, G. Engelhardt, R. Ebert, E. Lippmaa, and 
M. Alia, Z. Anorg. AlIg. Chem., in press. 

(6) D. Hoebbel, G. Garzo, G. Engelhardt, and A. Till, Z. Anorg. AlIg. 
Chem., 450, 5 (1979). 

(7) G. Engelhardt, W. Altenburg, D. Hoebbel, and W. Wieker, Z. Anorg. 
AlIg. Chem., 437, 249 (1977). 
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Abstract: The high-resolution 29Si NMR spectra of solid silicates and aluminosilicates have been studied. High-speed magic 
angle sample spinning in combination with high-power proton decoupling and, wherever possible, polarization transfer was 
used to achieve high (1 ppm) resolution. Although ionization and cation influence are reflected on 29Si chemical shifts, the 
isotropic 29Si chemical shifts in solids and solutions are generally the same and depend mainly on the degree of condensation 
of silicon-oxygen tetrahedra. In solid aluminosilicates, additional paramagnetic shifts appear, which correlate well with the 
degree of silicon substitution by aluminum. 


